Decomposition of blue-green algal (cyanobacterial) blooms in lake mendota, wisconsin.

نویسندگان

  • R D Fallon
  • T D Brock
چکیده

Decomposition of natural populations of Lake Mendota phytoplankton dominated by blue-green algae (cyanobacteria) was monitored by using oxygen uptake and disappearance of chlorophyll, algal volume (fluorescence microscopy), particulate protein, particulate organic carbon, and photosynthetic ability (CO(2) up-take). In some experiments, decomposition of C-labeled axenic cultures of Anabaena sp. was also measured. In addition to decomposition, mineralization of inorganic nitrogen and phosphorus were followed in some experiments. Decomposition could be described as a first-order process, and the rate of decomposition was similar to that found by others using pure cultures of eucaryotic algae. Nitrogen and phosphorus never limited the decomposition process, even when the lake water was severely limited in soluble forms of these nutrients. This suggests that the bacteria responsible for decomposition can obtain all of their key nutrients for growth from the blue-green algal cells. Filtration of lake water through plankton netting that removed up to 90% of the algal biomass usually did not cause a similar decrease in oxygen demand, suggesting that most of the particulate organic matter used for respiration of the decomposing bacteria was in a small-particle fraction. Short-term oxygen demand correlated well with the particulate chlorophyll concentration of the sample, and a relationship was derived that could be used to predict community respiration of the lake from chlorophyll concentration. Kinetic analysis showed that not all analyzed components disappeared at the same rate during the decomposition process. The relative rates of decrease of the measured parameters were as follows: photosynthetic ability > algal volume > particulate chlorophyll > particulate protein. Decomposition of C-labeled Anabaena occurred at similar rates with aerobic epilimnetic water and with anaerobic sediment, but was considerably slower with anaerobic hypolimnetic water. Of the various genera present in the lake, Aphanizomenon and Anabaena were more sensitive to decomposition than was Microcystis. In addition to providing a general picture of the decomposition process, the present work relates to other work on sedimentation to provide a detailed picture of the fate of blue-green algal biomass in a eutrophic lake ecosystem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Perspectives on the eutrophication of the Yahara lakes

Lathrop, R.C. 2007. Perspectives on the eutrophication of the Yahara lakes. Lake and Reserv. Manage. 23:345– 365. Eutrophication of the four Yahara lakes—Mendota, Monona, Waubesa, and Kegonsa—near Madison, Wisconsin, has been dramatic since the mid-1800s. For Lake Mendota, the erosion of sediments from higher water levels established by the damming of the lake’s outlet, plus the agricultural ex...

متن کامل

Blue-green algal inhibition of diatom growth: transition from mesotrophic to eutrophic community structure.

Cell-free filtrates of axenic or bacterized cultures of the dominant blue-green algae from a freshwater lake inhibited the growth of diatoms isolated from the same lake. Lake waters, collected during blue-green algal blooms, also inhibited diatom growth. In situ observations over a 5-year period indicate that diatom bloom populations vary inversely with the levels of the preceding blue-green al...

متن کامل

Field Manual of Wildlife Diseases—General Field Procedures and Diseases of Birds

Periodic blooms of algae, including true algae, dinoflagellates, and cyanobacteria or blue-green algae have been reported in marine and freshwater bodies throughout the world. Although many blooms are merely an aesthetic nuisance, some species of algae produce toxins that kill fish, shellfish, humans, livestock and wildlife. Pigmented blooms of toxinproducing marine algae are often referred to ...

متن کامل

The Role of Nitrogen Fixation in Cyanobacterial Bloom Toxicity in a Temperate, Eutrophic Lake

Toxic cyanobacterial blooms threaten freshwaters worldwide but have proven difficult to predict because the mechanisms of bloom formation and toxin production are unknown, especially on weekly time scales. Water quality management continues to focus on aggregated metrics, such as chlorophyll and total nutrients, which may not be sufficient to explain complex community changes and functions such...

متن کامل

Algal Blooms and Cyanotoxins in Jordan Lake, North Carolina

The eutrophication of waterways has led to a rise in cyanobacterial, harmful algal blooms (CyanoHABs) worldwide. The deterioration of water quality due to excess algal biomass in lakes has been well documented (e.g., water clarity, hypoxic conditions), but health risks associated with cyanotoxins remain largely unexplored in the absence of toxin information. This study is the first to document ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 37 5  شماره 

صفحات  -

تاریخ انتشار 1979